
© 2013 EDB All rights reserved. 1

What’s in a Plan?

• Robert Haas | 2019-10-18

© 2018-2019 EDB All rights reserved. 2

• Volcano-Style Execution

• The Plan Data Structure Generally

• Specialty Information (Costing, Parallel Query)

• Core Information (Target List, Filter Qual, Subtrees)

• Parameters, InitPlans, SubPlans

• Expression Deparsing

Overview

© 2018-2019 EDB All rights reserved. 3

• A PostgreSQL plan is a tree of Plan nodes.

• Tuples are “pulled” from the top of the tree, which pulls
from progressively lower levels of the tree; the nodes at
the bottom pull from base relations.

• The first system that I know of which used a system of
this type is called Volcano (early 1990s), and so we
refer to this as Volcano-style execution.

• Data flow in EXPLAIN plans is from more deeply
indented levels to less deeply indented levels.

Volcano-Style Execution

© 2018-2019 EDB All rights reserved. 4

explain (costs off) select * from tenk1 t1 left join
(tenk1 t2 join tenk1 t3 on t2.thousand = t3.unique2) on
t1.hundred = t2.hundred and t1.ten + t2.ten = t3.ten
where t1.unique1 = 1;

 Nested Loop Left Join
 -> Index Scan using tenk1_unique1 on tenk1 t1
 Index Cond: (unique1 = 1)
 -> Nested Loop
 Join Filter: ((t1.ten + t2.ten) = t3.ten)
 -> Bitmap Heap Scan on tenk1 t2
 Recheck Cond: (t1.hundred = hundred)
 -> Bitmap Index Scan on tenk1_hundred
 Index Cond: (hundred = t1.hundred)
 -> Index Scan using tenk1_unique2 on tenk1 t3
 Index Cond: (unique2 = t2.thousand)

Volcano-Style Plan

© 2018-2019 EDB All rights reserved. 5

typedef struct Plan
{
 NodeTag type;

 /* estimated execution costs for plan (see costsize.c for more info) */
 Cost startup_cost; /* cost expended before fetching any tuples */
 Cost total_cost; /* total cost (assuming all tuples fetched) */

 /* planner's estimate of result size of this plan step */
 double plan_rows; /* number of rows plan is expected to emit */
 int plan_width; /* average row width in bytes */

 /*
 * information needed for parallel query
 */
 bool parallel_aware; /* engage parallel-aware logic? */
 bool parallel_safe; /* OK to use as part of parallel plan? */

 /*
 * Common structural data for all Plan types.
 */
 int plan_node_id; /* unique across entire final plan tree */
 List *targetlist; /* target list to be computed at this node */
 List *qual; /* implicitly-ANDed qual conditions */
 struct Plan *lefttree; /* input plan tree(s) */
 struct Plan *righttree;
 List *initPlan; /* Init Plan nodes (un-correlated expr
 * subselects) */

 /*
 * Information for management of parameter-change-driven rescanning
 */
 Bitmapset *extParam;
 Bitmapset *allParam;
} Plan;

Plan Data Structure: Definition

© 2018-2019 EDB All rights reserved. 6

typedef struct Plan
{
 NodeTag type;

 /* estimated execution costs for plan (see costsize.c for more info) */
 Cost startup_cost; /* cost expended before fetching any tuples */
 Cost total_cost; /* total cost (assuming all tuples fetched) */

 /* planner's estimate of result size of this plan step */
 double plan_rows; /* number of rows plan is expected to emit */
 int plan_width; /* average row width in bytes */

 /*
 * information needed for parallel query
 */
 bool parallel_aware; /* engage parallel-aware logic? */
 bool parallel_safe; /* OK to use as part of parallel plan? */

 /*
 * Common structural data for all Plan types.
 */
 int plan_node_id; /* unique across entire final plan tree */
 List *targetlist; /* target list to be computed at this node */
 List *qual; /* implicitly-ANDed qual conditions */
 struct Plan *lefttree; /* input plan tree(s) */
 struct Plan *righttree;
 List *initPlan; /* Init Plan nodes (un-correlated expr
 * subselects) */

 /*
 * Information for management of parameter-change-driven rescanning
 */
 Bitmapset *extParam;
 Bitmapset *allParam;
} Plan;

Plan Data Structure: Definition

© 2018-2019 EDB All rights reserved. 7

• Node Tag

• Costing Information

• Parallel Query Support

• Target List & Qual

• Left & Right Subtrees

• InitPlans

• extParam & allParam

• Type-specific information

Plan Data Structure: By Category

© 2018-2019 EDB All rights reserved. 8

• PostgreSQL first generates paths representing possible
query plans; winning paths are converted to plans.

• Costs are important at the path stage because they let
us determine which paths are best, but we also save
the information in the final plan.

 /*
 * estimated execution costs for plan
 */
 Cost startup_cost;
 Cost total_cost;

 /*
 * planner's estimate of result size
 */
 double plan_rows;
 int plan_width; /* in bytes/row */

Costing Information

© 2018-2019 EDB All rights reserved. 9

• EXPLAIN.

• For a hash join or hashed subplan, row count and
width are used to set the initial size of the hash table.

• For a hash join, should we fetch the first outer tuple
before or after building the hash table?

• Decide between AlternativeSubPlans.

• Decide between custom plans and generic plans.

Costing Information: Uses

© 2018-2019 EDB All rights reserved. 10

 /* engage parallel-aware logic? */
 bool parallel_aware;

 /* OK to use as part of parallel plan? */
 bool parallel_safe;

 /* unique across entire final plan tree */
 int plan_node_id;

Parallel Query

© 2018-2019 EDB All rights reserved. 11

• Why do we need the parallel_aware flag?

 Gather
 -> Merge Join
 -> Parallel Index Scan on a
 -> Index Scan on b

• Why do we need the plan_node_id?

 Gather
 -> Append
 -> Parallel Seq Scan on p1
 -> Parallel Seq Scan on p2
 -> Parallel Seq Scan on p3

Parallel Query: Motivation

© 2018-2019 EDB All rights reserved. 12

• Target List: The list of columns or expressions that this
node will produce.

• Filter or “Qual” Condition: A test that will be performed
on each generated row; those that fail are discarded.

• Left and Right Subtrees: The inputs to the current plan
node.

– For example, the inputs to a join are the two
relations being joined.

– Many plan nodes have only one input, or none at
all.

Target List, Qual, Left & Right Subtrees (1)

© 2018-2019 EDB All rights reserved. 13

 /* target list to be computed at this node */
 List *targetlist;

 /* implicitly-ANDed qual conditions */
 List *qual;

 /* input plan tree(s) */
 struct Plan *lefttree;
 struct Plan *righttree;

Target List, Qual, Left & Right Subtrees (2)

© 2018-2019 EDB All rights reserved. 14

 Merge Left Join
 Output: a.q2, b.q1
 Merge Cond: (a.q2 = (COALESCE(b.q1, '1'::bigint)))
 Filter: (COALESCE(b.q1, '1'::bigint) > 0)
 -> Sort
 Output: a.q2
 Sort Key: a.q2
 -> Seq Scan on public.int8_tbl a
 Output: a.q2
 -> Sort
 Output: b.q1, (COALESCE(b.q1, '1'::bigint))
 Sort Key: (COALESCE(b.q1, '1'::bigint))
 -> Seq Scan on public.int8_tbl b
 Output: b.q1, COALESCE(b.q1, '1'::bigint)

Target List, Qual, Left & Right Subtrees (3)

© 2018-2019 EDB All rights reserved. 15

 Append
 -> Seq Scan on foo
 -> Seq Scan on bar
 -> Seq Scan on baz
 -> Seq Scan on quux

Plans With Many Inputs

© 2018-2019 EDB All rights reserved. 16

• In complex plans, it’s hard to stick to strictly Volcano-
style execution.

• For some kinds of plan constructs, we need a more
flexible way to move data around.

• A parameter is a container for a single value which can
be set by one part of the plan and then later used
elsewhere.

• The planner is responsible for arranging the plan so
that parameters are set before use, and updated when
necessary.

• Parameters are numbered ($0, $1, etc.).

Parameters

© 2018-2019 EDB All rights reserved. 17

• An InitPlan or SubPlan is a planning construct that is
used by certain kinds of queries.

• Specifically, either an InitPlan or a SubPlan will be
created when a subquery is used in a part of the query
other than the FROM clause.

• Which one of these gets created depends on whether
the subquery depends on the outer query level, as well
as on exactly how the subquery is used.

• An InitPlan concludes by setting a parameter. It is
typically run just once; once the parameter is set, it
holds onto the assigned to it.

InitPlans & SubPlans (1)

© 2018-2019 EDB All rights reserved. 18

regression=# explain (costs off, verbose) select f1,
(select odd from tenk1 where unique1 = f1) from int4_tbl
where f1 = (select min(abs(f1)) from int4_tbl);

 Seq Scan on public.int4_tbl
 Output: int4_tbl.f1, (SubPlan 1)
 Filter: (int4_tbl.f1 = $1)
 InitPlan 2 (returns $1)
 -> Aggregate
 Output: min(abs(int4_tbl_1.f1))
 -> Seq Scan on public.int4_tbl int4_tbl_1
 Output: int4_tbl_1.f1
 SubPlan 1
 -> Index Scan using tenk1_unique1 on public.tenk1
 Output: tenk1.odd
 Index Cond: (tenk1.unique1 = int4_tbl.f1)

InitPlans & SubPlans (2)

© 2018-2019 EDB All rights reserved. 19

• Each Plan node carries a list of associated initPlans.

• SubPlans are not directly attached to the Plan; they
just appear in expressions.

• At runtime, the executor finds all the attached SubPlan
structures and puts them into a list.

 List *initPlan; /* Init Plan nodes (un-correlated
 * expr subselects) */

Plan nodes list InitPlans, not SubPlans!

© 2018-2019 EDB All rights reserved. 20

 /*
 * Information for parameter-change-driven rescanning
 *
 * extParam includes the paramIDs of all external
 * PARAM_EXEC params affecting this plan node or its
 * children. setParam params from the node's
 * initPlans are not included, but their extParams
 * are.
 *
 * allParam includes all the extParam paramIDs, plus
 * the IDs of local params that affect the node (i.e.,
 * the setParams of its initplans). These are _all_
 * the PARAM_EXEC params that affect this node.
 */
 Bitmapset *extParam;
 Bitmapset *allParam;

extParam & allParam

© 2018-2019 EDB All rights reserved. 21

regression=# explain (costs off, verbose) select f1 from
int4_tbl where f1 = (select min(abs(f1)) from int4_tbl);

 Seq Scan on public.int4_tbl allParam = {$0}←
 Output: int4_tbl.f1
 Filter: (int4_tbl.f1 = $0)
 InitPlan 2 (returns $0)
 -> Aggregate
 Output: min(abs(int4_tbl_1.f1))
 -> Seq Scan on public.int4_tbl int4_tbl_1
 Output: int4_tbl_1.f1

extParam & allParam: Example

© 2018-2019 EDB All rights reserved. 22

Nested Loop
-> Seq Scan on int4_tbl
-> Append
 -> Index Scan using t3i on t3 a
 Index Cond: (expensivefunc(x) = int4_tbl.f1)
 -> Index Scan using t3i on t3 b
 Index Cond: (expensivefunc(x) = int4_tbl.f1)

Hidden Parameters

© 2018-2019 EDB All rights reserved. 23

Nested Loop
-> Seq Scan on int4_tbl
-> Append extParam = allParam = {$0}←
 -> Index Scan using t3i on t3 a here too←
 Index Cond: (expensivefunc(x) = int4_tbl.f1)
 -> Index Scan using t3i on t3 b and also here←
 Index Cond: (expensivefunc(x) = int4_tbl.f1)

Hidden Parameters Revealed

© 2018-2019 EDB All rights reserved. 24

• allParam is used to decide which nodes to reset when
we need to rescan.

• For example, a parameterized index scan needs to
produce different results if the parameter changes.

• Some nodes, like Sort and Materialize, cache the data
they output so that they can cheaply produce the same
output again.

• But, if any of the parameters listed in allParam change,
then the node needs to throw away any cached data
and reread its input.

• As the input will have changed due to the different
parameter, the output will also change.

extParams & allParams: Execution

© 2018-2019 EDB All rights reserved. 25

Nested Loop Left Join
 Output: "*VALUES*".column1, i1.f1, (666)
 Join Filter: ("*VALUES*".column1 = i1.f1)
 -> Values Scan on "*VALUES*"
 Output: "*VALUES*".column1
 -> Materialize
 Output: i1.f1, (666)
 -> Nested Loop Left Join
 Output: i1.f1, 666
 -> Seq Scan on public.int4_tbl i1
 Output: i1.f1
 -> Index Only Scan using tenk1_unique2 on
public.tenk1 i2
 Output: i2.unique2
 Index Cond: (i2.unique2 = i1.f1)

Expression Deparsing: It’s all a lie!

© 2018-2019 EDB All rights reserved. 26

Nested Loop Left Join
 Output: OUTER.1, INNER.1, INNER.2
 Join Filter: (OUTER.1 = INNER.1)
 -> Values Scan on "*VALUES*"
 Output: "*VALUES*".column1
 -> Materialize
 Output: OUTER.1, OUTER.2
 -> Nested Loop Left Join
 Output: OUTER.1, 666
 -> Seq Scan on public.int4_tbl i1
 Output: i1.f1
 -> Index Only Scan using tenk1_unique2 on
public.tenk1 i2
 Output: i2.unique2
 Index Cond: (i2.unique2 = $0)

Expression Deparsing: The lie exposed!

© 2018-2019 EDB All rights reserved. 27

• When we initially generated paths, references to table
columns (internally called “Var” nodes) and
expressions in target list and expressions refer to the
table that will really provide the value.

• But at execution time, it’s not useful to know the
original source of the value – we need to know from
where we can obtain it.

• One of the last stages of planning is to replace Vars
and expressions with Vars that refer to the “outer” or
“inner” plan.

Expression Deparsing: Explained

© 2018-2019 EDB All rights reserved. 28

• Any Questions?

Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

