
© 2013 EDB All rights reserved. 1

What’s in a Plan?

• Robert Haas  | 2019-10-18



© 2018-2019 EDB All rights reserved. 2

• Volcano-Style Execution

• The Plan Data Structure Generally

• Specialty Information (Costing, Parallel Query)

• Core Information (Target List, Filter Qual, Subtrees)

• Parameters, InitPlans, SubPlans

• Expression Deparsing

Overview
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• A PostgreSQL plan is a tree of Plan nodes.

• Tuples are “pulled” from the top of the tree, which pulls 
from progressively lower levels of the tree; the nodes at 
the bottom pull from base relations.

• The first system that I know of which used a system of 
this type is called Volcano (early 1990s), and so we 
refer to this as Volcano-style execution.

• Data flow in EXPLAIN plans is from more deeply 
indented levels to less deeply indented levels.

Volcano-Style Execution
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explain (costs off) select * from tenk1 t1 left join 
(tenk1 t2 join tenk1 t3 on t2.thousand = t3.unique2) on 
t1.hundred = t2.hundred and t1.ten + t2.ten = t3.ten 
where t1.unique1 = 1;

 Nested Loop Left Join
   ->  Index Scan using tenk1_unique1 on tenk1 t1
         Index Cond: (unique1 = 1)
   ->  Nested Loop
         Join Filter: ((t1.ten + t2.ten) = t3.ten)
         ->  Bitmap Heap Scan on tenk1 t2
               Recheck Cond: (t1.hundred = hundred)
               ->  Bitmap Index Scan on tenk1_hundred
                     Index Cond: (hundred = t1.hundred)
         ->  Index Scan using tenk1_unique2 on tenk1 t3
               Index Cond: (unique2 = t2.thousand)

Volcano-Style Plan
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typedef struct Plan
{
        NodeTag         type;

        /* estimated execution costs for plan (see costsize.c for more info) */
        Cost            startup_cost;   /* cost expended before fetching any tuples */
        Cost            total_cost;             /* total cost (assuming all tuples fetched) */

        /* planner's estimate of result size of this plan step */
        double          plan_rows;              /* number of rows plan is expected to emit */
        int                     plan_width;             /* average row width in bytes */

        /*
         * information needed for parallel query
         */
        bool            parallel_aware; /* engage parallel-aware logic? */
        bool            parallel_safe;  /* OK to use as part of parallel plan? */

        /*
         * Common structural data for all Plan types.
         */
        int                     plan_node_id;   /* unique across entire final plan tree */
        List       *targetlist;         /* target list to be computed at this node */
        List       *qual;                       /* implicitly-ANDed qual conditions */
        struct Plan *lefttree;          /* input plan tree(s) */
        struct Plan *righttree;
        List       *initPlan;           /* Init Plan nodes (un-correlated expr
                                                                 * subselects) */

        /*
         * Information for management of parameter-change-driven rescanning
         */
        Bitmapset  *extParam;
        Bitmapset  *allParam;
} Plan;

Plan Data Structure: Definition
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• Node Tag

• Costing Information

• Parallel Query Support

• Target List & Qual

• Left & Right Subtrees

• InitPlans

• extParam & allParam

• Type-specific information

Plan Data Structure: By Category
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• PostgreSQL first generates paths representing possible 
query plans; winning paths are converted to plans.

• Costs are important at the path stage because they let 
us determine which paths are best, but we also save 
the information in the final plan.

         /*
         * estimated execution costs for plan
         */
        Cost            startup_cost;
        Cost            total_cost;

        /*
         * planner's estimate of result size
         */
        double          plan_rows;
        int             plan_width;   /* in bytes/row */

Costing Information
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• EXPLAIN.

• For a hash join or hashed subplan, row count and 
width are used to set the initial size of the hash table.

• For a hash join, should we fetch the first outer tuple 
before or after building the hash table?

• Decide between AlternativeSubPlans.

• Decide between custom plans and generic plans.

Costing Information: Uses
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        /* engage parallel-aware logic? */
        bool            parallel_aware;

        /* OK to use as part of parallel plan? */
        bool            parallel_safe;

        /* unique across entire final plan tree */ 
        int             plan_node_id;

Parallel Query
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• Why do we need the parallel_aware flag?

    Gather
    -> Merge Join
      -> Parallel Index Scan on a
      -> Index Scan on b

• Why do we need the plan_node_id?

    Gather
    -> Append
      -> Parallel Seq Scan on p1
      -> Parallel Seq Scan on p2
      -> Parallel Seq Scan on p3

Parallel Query: Motivation
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• Target List: The list of columns or expressions that this 
node will produce.

• Filter or “Qual” Condition: A test that will be performed 
on each generated row; those that fail are discarded.

• Left and Right Subtrees: The inputs to the current plan 
node.

– For example, the inputs to a join are the two 
relations being joined.

– Many plan nodes have only one input, or none at 
all.

Target List, Qual, Left & Right Subtrees (1)
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    /* target list to be computed at this node */
    List       *targetlist;

    /* implicitly-ANDed qual conditions */
    List       *qual;

    /* input plan tree(s) */
    struct Plan *lefttree;
    struct Plan *righttree;

Target List, Qual, Left & Right Subtrees (2)
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 Merge Left Join
   Output: a.q2, b.q1
   Merge Cond: (a.q2 = (COALESCE(b.q1, '1'::bigint)))
   Filter: (COALESCE(b.q1, '1'::bigint) > 0)
   ->  Sort
         Output: a.q2
         Sort Key: a.q2
         ->  Seq Scan on public.int8_tbl a
               Output: a.q2
   ->  Sort
         Output: b.q1, (COALESCE(b.q1, '1'::bigint))
         Sort Key: (COALESCE(b.q1, '1'::bigint))
         ->  Seq Scan on public.int8_tbl b
               Output: b.q1, COALESCE(b.q1, '1'::bigint)

Target List, Qual, Left & Right Subtrees (3)
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    Append
    -> Seq Scan on foo
    -> Seq Scan on bar
    -> Seq Scan on baz
    -> Seq Scan on quux

Plans With Many Inputs
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• In complex plans, it’s hard to stick to strictly Volcano-
style execution.

• For some kinds of plan constructs, we need a more 
flexible way to move data around.

• A parameter is a container for a single value which can 
be set by one part of the plan and then later used 
elsewhere.

• The planner is responsible for arranging the plan so 
that parameters are set before use, and updated when 
necessary.

• Parameters are numbered ($0, $1, etc.).

Parameters
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• An InitPlan or SubPlan is a planning construct that is 
used by certain kinds of queries.

• Specifically, either an InitPlan or a SubPlan will be 
created when a subquery is used in a part of the query 
other than the FROM clause.

• Which one of these gets created depends on whether 
the subquery depends on the outer query level, as well 
as on exactly how the subquery is used.

• An InitPlan concludes by setting a parameter. It is 
typically run just once; once the parameter is set, it 
holds onto the assigned to it.

InitPlans & SubPlans (1)
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regression=# explain (costs off, verbose) select f1, 
(select odd from tenk1 where unique1 = f1) from int4_tbl 
where f1 = (select min(abs(f1)) from int4_tbl);

 Seq Scan on public.int4_tbl
   Output: int4_tbl.f1, (SubPlan 1)
   Filter: (int4_tbl.f1 = $1)
   InitPlan 2 (returns $1)
     ->  Aggregate
           Output: min(abs(int4_tbl_1.f1))
           ->  Seq Scan on public.int4_tbl int4_tbl_1
                 Output: int4_tbl_1.f1
   SubPlan 1
     ->  Index Scan using tenk1_unique1 on public.tenk1
           Output: tenk1.odd
           Index Cond: (tenk1.unique1 = int4_tbl.f1)

InitPlans & SubPlans (2)
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• Each Plan node carries a list of associated initPlans.

• SubPlans are not directly attached to the Plan; they 
just appear in expressions.

• At runtime, the executor finds all the attached SubPlan 
structures and puts them into a list.

    List *initPlan;  /* Init Plan nodes (un-correlated    
                     * expr subselects) */

Plan nodes list InitPlans, not SubPlans!
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  /*
   * Information for parameter-change-driven rescanning
   *
   * extParam includes the paramIDs of all external
   * PARAM_EXEC params affecting this plan node or its
   * children.  setParam params from the node's
   * initPlans are not included, but their extParams
   * are.
   *
   * allParam includes all the extParam paramIDs, plus
   * the IDs of local params that affect the node (i.e.,
   * the setParams of its initplans). These are _all_
   * the PARAM_EXEC params that affect this node.
   */
   Bitmapset  *extParam;
   Bitmapset  *allParam;

extParam & allParam
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regression=# explain (costs off, verbose) select f1 from 
int4_tbl where f1 = (select min(abs(f1)) from int4_tbl);

 Seq Scan on public.int4_tbl  allParam = {$0}←
   Output: int4_tbl.f1
   Filter: (int4_tbl.f1 = $0)
   InitPlan 2 (returns $0)
     ->  Aggregate
           Output: min(abs(int4_tbl_1.f1))
           ->  Seq Scan on public.int4_tbl int4_tbl_1
                 Output: int4_tbl_1.f1

extParam & allParam: Example
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Nested Loop
-> Seq Scan on int4_tbl
-> Append
  -> Index Scan using t3i on t3 a
     Index Cond: (expensivefunc(x) = int4_tbl.f1)
  -> Index Scan using t3i on t3 b
     Index Cond: (expensivefunc(x) = int4_tbl.f1)

Hidden Parameters
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Nested Loop
-> Seq Scan on int4_tbl
-> Append  extParam = allParam = {$0}←
  -> Index Scan using t3i on t3 a  here too←
     Index Cond: (expensivefunc(x) = int4_tbl.f1)
  -> Index Scan using t3i on t3 b  and also here←
     Index Cond: (expensivefunc(x) = int4_tbl.f1)

Hidden Parameters Revealed
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• allParam is used to decide which nodes to reset when 
we need to rescan.

• For example, a parameterized index scan needs to 
produce different results if the parameter changes.

• Some nodes, like Sort and Materialize, cache the data 
they output so that they can cheaply produce the same 
output again.

• But, if any of the parameters listed in allParam change, 
then the node needs to throw away any cached data 
and reread its input.

• As the input will have changed due to the different 
parameter, the output will also change.

extParams & allParams: Execution
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Nested Loop Left Join
  Output: "*VALUES*".column1, i1.f1, (666)
  Join Filter: ("*VALUES*".column1 = i1.f1)
  -> Values Scan on "*VALUES*"
     Output: "*VALUES*".column1
  -> Materialize
     Output: i1.f1, (666)
     -> Nested Loop Left Join
        Output: i1.f1, 666
        -> Seq Scan on public.int4_tbl i1
           Output: i1.f1
        -> Index Only Scan using tenk1_unique2 on 
public.tenk1 i2
           Output: i2.unique2
           Index Cond: (i2.unique2 = i1.f1)

Expression Deparsing: It’s all a lie!
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Nested Loop Left Join
  Output: OUTER.1, INNER.1, INNER.2
  Join Filter: (OUTER.1 = INNER.1)
  -> Values Scan on "*VALUES*"
     Output: "*VALUES*".column1
  -> Materialize
     Output: OUTER.1, OUTER.2
     -> Nested Loop Left Join
        Output: OUTER.1, 666
        -> Seq Scan on public.int4_tbl i1
           Output: i1.f1
        -> Index Only Scan using tenk1_unique2 on 
public.tenk1 i2
           Output: i2.unique2
           Index Cond: (i2.unique2 = $0)

Expression Deparsing: The lie exposed!
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• When we initially generated paths, references to table 
columns (internally called “Var” nodes) and 
expressions in target list and expressions refer to the 
table that will really provide the value.

• But at execution time, it’s not useful to know the 
original source of the value – we need to know from 
where we can obtain it.

• One of the last stages of planning is to replace Vars 
and expressions with Vars that refer to the “outer” or 
“inner” plan. 

Expression Deparsing: Explained
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• Any Questions?

Thanks
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